Complex Numbers and the Imaginary Unit

Start by navigating to the Online Lesson for instructions.

Objectives

- O Classify complex numbers (real, imaginary, complex).
- \bigcirc Define the imaginary unit as $i^2 = -1$.
- Simplify roots of negative numbers using the imaginary unit.
- **⊘** Simplify powers of the imaginary unit.

Why?

Complex numbers show the entire number system, Real and Imaginary. This concept helps deepen your understanding when graphing polynomials. But first, you need to learn what complex numbers are and how to work with them. Imaginary numbers are important because they provide ways to find solutions that otherwise would not have a real number solution, which is important in solving problems in engineering and physics.

⅙ Warm Up

Simplify.

1)
$$(2x - \sqrt{3})(2x + \sqrt{3})$$

2)
$$x^{55} \div x^{11}$$

3)
$$(x^8)^4$$

4)
$$\sqrt{-4}$$

To continue, return to the Online Lesson.

A Explore

$\dot{\mathbb{M}}$ The Imaginary Unit i

- Fill in the notes as you watch the video in the Online Lesson.
- lacktriangle The imaginary unit i is a special number in math that is unique because it does not have a
- lacktriangle The imaginary unit i is defined as: ______
- The number i is the principal square root of –1, or: _____

Imaginary numbers can be _____ using the following guidelines:

Rules for the Imaginary Unit

$$i^0 = 1$$

$$i = \sqrt{-1}$$

$$i^2 = -1$$

$$i^3 = -i$$

$$i^4 = 1$$

- When evaluating an expression using the number i, use the ______ to rewrite the base as i^4 raised to a power because $i^4 = 1$ will be easier to work with.
- If there is a ______, it determines if the answer will be i, -1, or -i.

Example 1

(b) Complete the example as you watch the video in the Online Lesson.

Evaluate.

- **A)** i^{9}
 - $i^8 \cdot i$
 - $(i^4)^2 \cdot i$

 $(1)^2 \cdot i$

- - $i^{8} \cdot i^{3}$

D) i^{12}

Example 2

Description Complete the example as you watch the video in the Online Lesson.

Evaluate.

- **A)** i^{39} $39 \div 4 = 9 R3$ $(i^4)^9 \cdot i^3$
- **B)** i^{85}

- ☑ Checkpoint: The Imaginary Unit i Evaluate.
 - **A)** i^{18}

B) i^{43}

To continue, return to the Online Lesson.

M Negative Square Roots

- Fill in the notes as you watch the video in the Online Lesson.
- The rules to simplify radical expressions are only true when the radicands are
- However, because the number i is the principal square root of -1, or $i = \sqrt{-1}$, problems that have a _____ radicand can now be simplified using the
- Therefore, _____ must be simplified out of the radicand first. Then the remaining radicand can be simplified, if possible.

Example 3

(D) Complete the example as you watch the video in the Online Lesson.

Simplify.

$$\sqrt{-16}$$

Implement

$$\sqrt{-1 \cdot 2^4}$$

$$i \cdot 2^2$$

4i

Explain

- ▶ Prime factorization
- Simplify

Example 4

© Complete the example as you watch the video in the Online Lesson.

Simplify.

$$\sqrt{-12}$$

Implement

Explain

- ▶ Prime factorization
- Simplify

Example 5

© Complete the example as you watch the video in the Online Lesson.

Simplify.

$$\sqrt{-8} \cdot \sqrt{-6}$$

Implement

Explain

- ▶ Simplify out $\sqrt{-1}$
- ightharpoonup Simplify i and radicands

Simplify.

A)
$$\sqrt{-100}$$

B)
$$\sqrt{-33} \cdot \sqrt{3}$$

To continue, return to the Online Lesson.

The Complex Number System

Fill in the notes as you watch the video in the Online Lesson.

- The complex number system consists of numbers in the form ______, where *a* and b are part of the _____ number system, or $a \in \mathbb{R}$, $b \in \mathbb{R}$.
- includes the set of real numbers $\mathbb R$, and the set of imaginary numbers i.
- lacktriangle The number i can only be combined with ______, meaning other imaginary numbers.
- This means that a real number and an imaginary number can only be written as an
 - \blacksquare are written as a+bi where b=0 (or a).
 - _____ are written as a + bi where a = 0 (or bi).

Complex Numbers (ℂ)

$$a + bi$$
 $-4 - 9i$ $11 + 2i$

Real Numbers (\mathbb{R})

a + bi, where b = 0

Includes: Natural N, Whole W, Integer \mathbb{Z} , Rational \mathbb{Q} , Irrational \mathbb{I}

$$\sqrt{81}$$

$$-3$$

$$-5 + 0i$$
112

Imaginary Numbers (i)

$$a + bi$$
, where $a = 0$

$$\sqrt{-1}$$
 4i $-6i$

Example 6

Description Complete the example as you watch the video in the Online Lesson.

Classify by all sets to which it belongs: real, pure imaginary, complex. Then add A-D to the Complex Number diagram on the previous page.

- 15 + 3iA)
- B) -8i
- **C)** $-48 + i^2$
- **D)** 7 10i

☑ Checkpoint: The Complex Number System

Classify by all sets to which it belongs: real, pure imaginary, complex. Then add to the Complex Number diagram (in the guided notes).

- **A)** 26*i*
- **B)** 3 + 7i

Practice 1

Complete problems on a separate sheet of paper.

Evaluate.

1)
$$i^{29}$$

3)
$$i^{16}$$

5)
$$i^{120}$$

7)
$$i^{38}$$

8)
$$i^{67}$$

Simplify.

9)
$$\sqrt{-18}$$

10)
$$\sqrt{-36} \cdot \sqrt{-16}$$

11)
$$\sqrt{-54}$$

12)
$$\sqrt{-32}$$

13)
$$\sqrt{-144}$$

14)
$$3\sqrt{-10} \cdot 7\sqrt{-35}$$

15)
$$2\sqrt{-81} \cdot \sqrt{-24}$$

16)
$$\sqrt{-98}$$

Simplify. Then classify by all sets to which it belongs: real, pure imaginary, complex.

17)
$$\sqrt{12}$$

18)
$$\sqrt{16} + \sqrt{-8}$$

19)
$$\sqrt{-121}$$

20)
$$5 + \sqrt{49}$$

22)
$$\sqrt{-25}$$

23)
$$\sqrt{-49} \cdot \sqrt{-4}$$

24)
$$13 - \sqrt{-9}$$

🖄 Mastery Check

Show What You Know

Complete the statement with always, sometimes, or never. If your answer is sometimes or never, provide an example to back up your choice.

- **A)** The imaginary unit *i* raised to a whole number power is ______ a pure imaginary number.
- **B)** Complex numbers _____ include the sets of real and imaginary numbers.
- C) The square root of a negative number is _____ a real number.
- **D)** Complex numbers are _____ classified as real, complex numbers.

In your own words, talk about what you have learned using the objectives for this part of the lesson and your work on this page.

To continue, return to the Online Lesson.

© Demme Learning | 1025 Algebra 2: Advanced Algebra 8

Practice 2

Complete problems on a separate sheet of paper.

Evaluate.

1)
$$i^2$$

2)
$$i^{78}$$

3)
$$i^{15}$$

4)
$$i^{10}$$

5)
$$i^{61}$$

Simplify.

7)
$$3\sqrt{-5} \cdot 2\sqrt{-4}$$

8)
$$6\sqrt{-40}$$

9)
$$\sqrt{-12} \cdot \sqrt{-3}$$

10)
$$\sqrt{-196}$$

11)
$$20\sqrt{-7} \cdot \sqrt{-14}$$

12)
$$\sqrt{-64}$$

Simplify. Then classify by all sets to which it belongs: real, pure imaginary, complex.

13)
$$\sqrt{-4}$$

14)
$$\sqrt{-49} \cdot \sqrt{-100}$$

15)
$$-5\sqrt{50}\cdot\sqrt{-8}$$

16)
$$\sqrt{-9} \cdot \sqrt{-81}$$

17)
$$\sqrt{121} - \sqrt{-20}$$

18)
$$\sqrt{-45}$$

© Targeted Review

Complete problems on a separate sheet of paper.

Simplify.

1)
$$\sqrt{35x} \cdot \sqrt{15x^3}$$

2)
$$(10+\sqrt{7})-(8+12\sqrt{7})$$
 3) $\frac{2+\sqrt{5}}{10+\sqrt{6}}$

3)
$$\frac{2+\sqrt{5}}{10+\sqrt{6}}$$

Solve.

4)
$$\sqrt[3]{x+3} = 3$$

5)
$$\sqrt{x} + 5 \ge 7$$

6)
$$\sqrt{2x-3} < 7$$

Graph.

7)
$$y = \frac{4}{3}x - 2$$

8)
$$y = -\frac{1}{x-3} - 2$$

Multiple Choice

_____ **9)** Simplify. $\sqrt[3]{48x^8y^3}$

A)
$$2x^2y\sqrt[3]{6x^2}$$

B)
$$2x^2y\sqrt[3]{3x^2}$$

c)
$$4x^4y^2\sqrt[3]{3y}$$

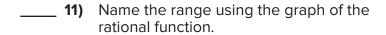
D)
$$16x^2y\sqrt[3]{x^2}$$

_ 10) Solve. $\sqrt{3x-1} - 6 = -2$

A)
$$\frac{1}{3}$$

c)
$$\frac{17}{3}$$

D) no solution

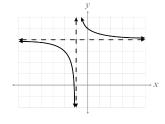


A)
$$\{y | y \in \mathbb{R}, y \neq -1\}$$
 B) $\{y | y \in \mathbb{R}, y \neq 0\}$

$$\mathbf{B)} \quad \{ y | y \in \mathbb{R}, \, y \neq 0 \}$$

C)
$$\{y | y \in \mathbb{R}, y \neq 4\}$$

D)
$$\{y | y \in \mathbb{R}, y \neq 5\}$$



_ **12)** Determine the equation that best represents the linear function.

A)
$$y = \frac{1}{4}x + 2$$

B)
$$y = -\frac{1}{4}x + 2$$

c)
$$y = -\frac{1}{5}x + 2$$

D)
$$y = \frac{1}{5}x + 2$$



Problem	1	2	3	4	5	6	7	8	9	10	11	12
Origin	L11	L12	L12	L13	L14	L14	A1	L10	L11	L13	L10	A1

L = Lesson in this level, A1 = Algebra 1: Principles of Secondary Mathematics, FD = Foundational Knowledge

