Functions

Start by navigating to the Online Lesson for instructions.

Objectives

- O Determine if a graph is a function.
- \bigcirc Write equations in terms of y or f(x).

Introduced in:

Algebra 1: Principles of Secondary Mathematics

Lesson 7B

M Functions

- (b) Fill in the notes as you watch the video in the Online Lesson.
- The is used on a coordinate plane to determine if a graph is a function.
- When a graph passes the VLT, the line only touches the graph at ______.
- When a function is present, the equation can be written in _______
- If function notation is used, you already know that the equation ______ a function.

Example 1

(b) Complete the example as you watch the video in the Online Lesson.

Determine if the graphs are functions.

A)

B)

Example 2

(b) Complete the example as you watch the video in the Online Lesson.

Write the equations with f in respect to x.

A)
$$y = 3x + 7$$
 $f(x) = 3x + 7$

B)
$$y = \frac{1}{2}x - 5$$

Practice

Explain why the graph does or does not represent a function.

1)

2)

3)

4)

Explain why the graph does or does not represent a function.

5)

6)

Write in terms of f(x).

7)
$$y = x^2 + 3x - 8$$

8)
$$y = |x - 4|$$

9)
$$y = -5(x+8)^3$$

10)
$$y = \frac{1}{5}x + 9$$

Write in terms of *y*.

11)
$$f(x) = 7x(x-9)^2$$

12)
$$f(x) = 6x - 2$$

Curious about what these equations look like when graphed? Use technology to check it out.

To continue, return to the Online Lesson.