Algebraic Properties

Where $\{a, c, b \in \mathbb{C}\}$

Commutative

$$a+b=b+a$$

$$a \cdot b = b \cdot a$$

Associative

$$a + (b+c) = (a+b) + c$$
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

Identity

$$a+0=a$$

$$a \cdot 1 = a$$

Inverse

$$a + (-a) = 0$$

$$\frac{a}{b} \cdot \frac{b}{a} = 1$$
; $a, b \neq 0$

Zero-Product

$$a \cdot 0 = 0$$

 $a \cdot b = 0$, then a or b equal 0

Distributive

$$a(b+c) = ab + bc$$

$$a(b-c) = ab - bc$$

Exponent Rules

Where $\{a, b, c \in \mathbb{Q}\}$ and $a \neq 0$

1)
$$a^b \cdot a^c = a^{b+c}$$

2)
$$(a^b)^c = a^{b \cdot c}$$

3)
$$(ab)^c = a^c b^c$$

4)
$$a^b = \frac{1}{a^{-b}}$$
 or $a^{-b} = \frac{1}{a^b}$

5)
$$a^0 = 1$$

7)
$$\frac{a^b}{a^c} = a^{b-c}$$
 or $\frac{1}{a^{c-b}}$

$$8) \quad a^{\frac{n}{d}} = \sqrt[d]{a^n}$$

Properties of Equality

Where $\{a, c, b \in \mathbb{C}\}$

Addition Property of Equality

If a = b, then a + c = b + c

Multiplication Property of Equality

If a = b, then ac = bc

Symmetric

If a = b, then b = a

Reflexive

$$a = a$$

Substitution

If a = b, then b can replace a in expressions and equations.

The Imaginary Unit

$$i = \sqrt{-1}$$

$$i^2 = -1$$

$$i^3 = -i$$

$$i^4 = 1$$

Formulas

Midpoint

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Distance

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Radical expressions

For $\sqrt[d]{x^n}$ if	d is odd	d is even
<i>x</i> < 0	one negative root	no real root
x = 0	one root, zero	one root, zero
<i>x</i> > 0	one positive root	one positive root, one negative root

Parent Equations

Quadratic

$$y = a(x - h)^2 + k$$

$$y = a\sqrt{x - h} + k$$

Absolute Value

$$y = a |x - h| + k$$

Cubic

$$y = a(x - h)^3 + k$$

Cube Root

$$y = a\sqrt[3]{x - h} + k$$

Floor

$$y = \lfloor x \rfloor$$

Reciprocal

$$y = \frac{a}{x - h} + k$$

Polynomial

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 x^0$$

Ceiling

$$y = \lceil x \rceil$$

Conics

Parabola (horizontal)

$$x = a(y - k)^2 + h$$

Circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Ellipse

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Hyperbola

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Linear Equations

Slope Formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope-intercept form

$$y = mx + b$$

Point-slope form

$$y - y_1 = m(x - x_1)$$

Standard form

$$Ax + By = C$$

Geometry Formulas

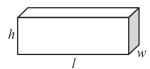
P: perimeter A: area

SA: surface area V: volume

Rectangle

$$P = 2l + 2w$$

$$A = lw$$


Triangle

$$P = a + b + c$$

$$A = \frac{1}{2}bh$$

Rectangular Prism

$$SA = 2lw + 2lh + 2wh$$
$$V = lwh$$

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

Plan, Implement, Explain Method for Problem-Solving

Plan how you will approach the problem.

Implement your plan to complete the problem, and then **check** your work.

Explain why your answer makes sense for the given problem.