Lesson 5 Polynomial Long Division

Start by logging on to the Digital Toolbox and navigating to the Online Lesson for instructions.

Objectives

- Simplify expressions by dividing a polynomial by a monomial.
- \bigcirc Use long division to divide polynomials.
- ✓ Write the remainder of a polynomial expression as a rational expression.

Why?

Polynomial long division is useful when a polynomial needs to be broken down into smaller parts. It is also used in some forms of computer programming, such as error-control coding and cyclic redundancy check (CRC) methods.

🖄 Warm Up

Simplify using long division. Write remainders as a fraction.

1) 11)13672

2) 12)2532

Find the GCF of each column and row. Then write the expression as the product of binomial factors and a quadratic trinomial.

⊡ **Explore**

л Dividing by a Monomial

▷ Fill in the guided notes as you watch the video in the Online Lesson.

- Division can be written in a number of ways.
- For example "Divide $Ax^2y^2 + Bxy + Cy$ by Axy" can be written symbolically as any of these options seen here:

- The ______ is the product of the divisor and quotient (plus the remainder, if present).
- A ______ is present when the divisor does not go into the

dividend evenly.

- Use the ______ rules when dividing a polynomial by a monomial.
- Divide every term in the _____ (dividend) by the

_____ (divisor).

It may be helpful to think of the monomial as the ______

of each term.

- Simplify the ______ like numerical fractions.
- Simplify the _____ using the exponent rules.

Complete the example as you watch the video in the Online Lesson.

Simplify.

 $(9a^4b^2 - 15a^3b^2 + 8a^2b - 6a^2)(3ab)^{-1}$

Implement

$$\frac{9a^4b^2 - 15a^3b^2 + 8a^2b - 6a^2}{3ab}$$

$$\frac{9a^4b^2}{3ab} - \frac{15a^3b^2}{3ab} + \frac{8a^2b}{3ab} - \frac{6a^2}{3ab}$$

Explain

- Rewrite expression as a fraction
- Rewrite the expression using the monomial as the LCD
- Simplify each term (fractional coefficients and exponent rules)

Example 2

Complete the example as you watch the video in the Online Lesson.

Simplify.

$$\frac{5x^3y^2z + 6x^2yz - xyz}{xyz}$$

Implement

Explain

- Rewrite the expression using the monomial as the LCD
- Simplify each term

л Polynomial Long Division to Factor (No Remainders)										
<i>Fill in the guided notes as you watch the video in the Online Lesson.</i>										
Use polynomial long division when the is a linear binomial (or higher										
degree and greater number of terms than a linear binomial).										
, <i>Q</i> (<i>x</i>) +										
(P(x))										
= degree out of the every										
degree out of the term with the degree out of the expression.										
Write the dividend and divisor in form.										
Polynomial expressions in standard form are written with the exponents (degree) in										
order.										
When the quotient has a remainder of zero, this means that the divisor is a										
of the polynomial (dividend). Or, (divisor)(quotient) = dividend.										
Another use for long division is determining polynomial factors when there is no remainder.										

(b) Complete the example as you watch the video in the Online Lesson.

Divide $7x^2 - 38x - 24$ by x - 6.

Plan

Write the expression with the long division symbol Simplify from largest to smaller degree terms using the divisor Write the quotient adhering to place-value by degree

Implement

Explain

First, find the value that can be used to eliminate $7x^2$ from the dividend $\begin{array}{r} 7x \\
x-6 \overline{\smash{\big)}} & 7x^2 - 38x - 24 \\
\underline{-(7x^2 - 42x)} \\
4x - 24 \end{array}$ Place 7x over the linear term in the dividend Subtract all terms \blacktriangleright Next, eliminate 4x Place + 4 over the constant in the dividend Subtract all terms

This solution has no remainder. The quotient is _____

This is correct because the product of $(x-6)(7x+4) = 7x^2 - 38x - 24$.

Example 4

Complete the example as you watch the video in the Online Lesson.

Simplify.

 $(6x^3 + 19x^2 + 7x - 12)(3x^2 + 5x - 4)^{-1}$

 $3x^2 + 5x - 4$) $6x^3 + 19x^2 + 7x - 12$

Complete the example as you watch the video in the Online Lesson.

Simplify.

$$4x - 3)20x^2 - 59x + 33$$

Example 6

Complete the example as you watch the video in the Online Lesson.

Simplify.

$$\left(2x^3 - 11x^2 + 13x - \frac{3}{2}\right) \div \left(2x^2 - 8x + 1\right)$$

Complete the example as you watch the video in the Online Lesson.

Simplify.

$$\frac{2x^3 - x^2 + x + 1}{x + 1}$$

Plan

Write the expressions with the long division symbol Simplify from largest to smaller degree terms using the divisor Write the quotient adhering to place-value by degree Write remainder as a rational expression

Complete the example as you watch the video in the Online Lesson.

Simplify.

$$\left(8x^3 - 4x - \frac{11}{8}\right) \div (4x - 3)$$

Practice 1

Complete problems on a separate sheet of paper.

Simplify. Write the polynomial expression with positive exponents.

1) $20a^{3}b^{2}-15ab^{3}+10a^{2}b$ 5ab 2) $(13x^{4}y^{5}+39x^{2}-26) \div 13x^{2}y$ 3) $2pq^{4}+12p^{2}q^{2}-9p^{3}q+8pq$ -3p^{3}q 4) $(4x^{4}-5x^{3}+8x^{2}-6x+2)(4x)^{-1}$

Simplify. Write the remainder as a fraction if one exists.

- **5)** $(3y^3 + 17y^2 + 22y + 8) \div (y + 4)$ **6)** $x^2 - 3x + 1)2x^3 - 3x^2 - 7x + 3$ **7)** $x - 1)3x^2 + 2x + 1$ **8)** $(x^4 - 3x^2 + x - 5)(x + 1)^{-1}$
- **9)** $2y-1)\overline{4y^2-8y+3}$ **10)** $3x^3+2x^2-8$ x+2
- **11)** $\frac{3x^4 + 2x^2 + 16x + 11}{x^2 + 2x + 1}$ **12)** $(2x^3 + 13x^2 x 110) \left(x \frac{5}{2}\right)^{-1}$
- **13)** $\frac{5a^3 30a^2 + 70}{5a}$ **14)** $(5y^4 + 3y^3 + 8) \div (y+2)$
- **15)** The volume of a rectangular prism is $2x^3 4x 16x + 42 \text{ cm}^3$. The area of the base is $2x^2 10x + 14 \text{ cm}^2$. Find the height.
- **16)** The area of a triangle is $x^2 + 8x + 7 m^2$. The height is x + 1 meters. Determine the length of the base.

🖄 Mastery Check

🖄 Show What You Know

A) A student completed the following problem. They know that the solution contains an error because the check does not result in the original problem. Find the correct solution. Prove your solution is correct by checking your work.

$$3x^{2} + 11x + 22 + \frac{51}{x+2}$$

$$x+2) \overline{)3x^{3} + 5x^{2} + 0x + 7} + \frac{51}{x+2}$$

$$-(3x^{3} + 6x^{2})$$

$$11x^{2} + 0x$$

$$-(11x + 22x)$$

$$22x + 7$$

$$-(22x + 44)$$

$$51$$

- B) Explain the error in the given work from part A.
- **C)** Another student found when $12x^4y^3 6x^3y^2 5xy + 3$ is divided by 3xy the quotient is $4x^3y^2 2x^2y$. Find the correct solution. Show your work.

小小 Say What You Know

In your own words, talk about what you have learned using the objectives for this part of the lesson and your work on this page.

To continue, return to the Online Lesson.

Practice 2

Complete problems on a separate sheet of paper.

Simplify. Write the polynomial expression with positive exponents. Write the remainder as a fraction if one exists.

1)
$$(x^4 - 8x^3 + 15x^2 - 23x - 9)(x + 3)^{-1}$$

2) $\frac{36x^2y^3 + 12xy^2 - 24xy}{-9xy}$
3) $\frac{3x^3 + 5x^2 - 2x + 1}{x - 1}$
4) $(2y^3 - 6y - 4) \div (y + 1)$

5)
$$\frac{y^4 - 3y^3 + 3y^2 + 72y - 22}{y^2 + 3y - 1}$$

7)
$$(5r^3w + 9r^2w^2 - 3rw^3) \div 45r$$

6) $(14a^4b^3 - 28a^2b^2 + 35ab)(7a^2b)^{-1}$

8)
$$5x-1)5x^3+14x^2-53x+14$$

9)
$$\frac{3x^4 + 17x^3 - 12x^2 - 19x + 7}{3x^2 + 2x - 1}$$

10)
$$(2x^4 - 3x^3 + x - 2) \div (x - 2)$$

- **11)** $(27y^3 8)(3y 2)^{-1}$ **12)** $(10g^5h^4 - 12g^4h^3 + 15g^3h + 5gh^2) \div (-15g^2h)$
- **13)** Determine the height of the pyramid when the volume is $6x^3 + 19x^2 11x 14$ cubic inches and an area of the base is $2x^2 + 5x 7$ square inches.
- **14)** The area of a rectangle is $5x^2 + 13x + 6$ square feet. Find the width of the rectangle if the length is 5x + 3 feet.

Targeted Review

Complete problems on a separate sheet of paper.

- **1)** What is an objective function when working with an optimization problem?
- **2)** Determine the least common multiple (LCM) for $7x^2$, 14xy, 2z.

Simplify.

- 3) $\frac{\left(\frac{5}{3}-\frac{1}{2}\right)}{2}$ 4) $\left(2\frac{3}{5}\right)\div\left(3\frac{1}{2}\right)$
- **5)** Factor completely: $4(x^2 1) + z^2(1 x^2)$
- 6) Simplify: $(x-3)(x-5) (x^2 2x 3)$
- 7) Bixby's Bead Shop placed three orders for black, white, and purple beads.
 In September, 30 black, 50 white, and 80 purple beads were purchased for \$460.
 In October, 80 black and 20 white beads were purchased for \$260. In November, \$166 was spent on 22 white and 36 purple beads. Write a system with three variables. Do not solve.
- 8) Determine the value of Q that will make the equation a polynomial identity. $(Qx-3)^2 = (2x-1)^2 - 8(x-1)$

Multiple Choice

- **9)** Determine the *range* of the function when the domain is all real numbers.
 - A) all real numbers
 - **B)** *y* ≤ 1
 - **C)** $y \ge 0$
 - **D)** $y \ge 1$

10) Determine the value of (y + z) for the system: 2x - 3y - 3z = 22**A)** 16

- ·
- **B)** 8
- **C)** 2
- **D)** -2
- **11)** Determine the expression that when set equal to $(ax)^3 (by)^3$ would form a polynomial identity.
 - **A)** $(ax by)((ax)^2 abxy (by)^2)$
 - **B)** $(ax by)((ax)^2 + abxy + (by)^2)$
 - **C)** $(ax by)(ax^2 + abxy + by^2)$
 - **D)** $(ax by)((ax)^2 + 2abxy + (by)^2)$
 - **12)** Select the word that best represents the polynomial. An expression with three terms with 2 as the highest degree
 - A) linear binomial
 - B) linear trinomial
 - C) quadratic trinomial
 - **D)** binomial trinomial

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Origin	L01	FD	FD	FD	L03	L03	L02	L04	A1	L02	L04	A1

L = Lesson in this level, A1 = Algebra 1: Principles of Secondary Mathematics, FD = Foundational Knowledge