Practice 1 Solutions

  1. Explain how the inverse of a function is found algebraically.

The inverse of a function is found by switching the domain and range values, or in other words switching the variables x and y in the equation.

Given relation R, create a table of R and a mapping of R1. Explain whether the relation and its inverse are functions.

  1. R=5, 2, 6, 7, 3, 1, 8, 10

R

x y
5 2
6 –7
3 1
8 –10

The relation and its inverse are both functions.

  1. R=3, 4, 9, 2, 6, 1, 4, 3, 2, 1

R

x y
–3 4
9 –2
6 1
–4 3
2 1

The relation is a function, but the inverse is not a function.

  1. A class was asked to list their favorite summer activity. The results were:
    R = {(Maddie, hiking), (Hope, relaxing), (Stetson, swimming), (Austin, hiking), (Natalee, relaxing)}.

R

Name Hiking
Maddie hiking
Hope relaxing
Stetson swimming
Austin hiking
Natalee relaxing

The relation is a function, but the inverse is not a function.

Verify that the given functions are inverses of one another using f(4).

Note

You may use a calculator to verify inverses.

  1.  fx=9x221gx=13x+1+2 

f4=94221g35=1335+1+2f4=35g35=4 

 f(x) and g(x) are inverses

  1.  fx=54x2gx=45x+2

 f4=5442g3=453+2 f4=3g3=225

 f(x) and g(x) are not inverses

  1.  fx=2x43+5gx=12x+53+4 

f4=2443+5g5=125+53+4f4=5g5=7816.5

 f(x) and g(x) are not inverses

Find the inverse of f(x) algebraically.

Note

You can verify if the inverse is a function by graphing with technology and using the VLT.

  1.  fx=7x+9, check with x=6.

x=7x+9x9=7yy=x97f6=76+9f6=51f151=5197f151=6

 f1x=x97

  1.  fx=2x3 for x|x0, check with x=9.

x=2y3x+3=2yx+32=yy=x+322f9=293f9=3f13=143+32f13=9

 f1x=14x+32

  1.  fx=8x+13, check with x=2.

x=8y+13x8=y+13x83=y+112x3=y+1y=12x31f2=82+13f2=8f18=12831f18=2

 f1x=12x31

Find the inverse of f(x) algebraically. 
Name the domain and range for the given function as well as its inverse.

  1.  fx=1x4+1, check with x=8.

x=1y4+1x1=1y4x1y4=1y4=1x1f8=181+4f8=114f1114=11141+4f1114=8

 f1x=1x1+4Domainf: x, x4, Rangef: y, y1Domainf1: x, x1, Rangef1: y, y4

  1.  fx=x+12+3, x|x1, check with x=5.

x=y+12+3x3=y+12±x3=y+1f5=5+12+3f5=39f139=3931f139=5

 f1x=x31Domainf: x, x1, Rangef: y, y3Domainf1: x, x3, Rangef1: y, y1

Note

Recall that only x0 values need to be considered from f(x). Therefore the ± symbol is not needed when the square root is taken.

Customer Service

Monday–Thursday 8:30am–6pm ET