Practice 1 Solutions

Given the graph, find the minimum and maximum values using the objective function.

  1.  fx, y=12x+4y

 f(2, 0)=12(2)+4(0) f(2, 0)=1   minimum f(4, 0)=12(4)+4(0) f(4, 0)=2 f(0, 5)=12(0)+4(5) f(0, 5)=20 f(1, 6)=12(1)+4(6) f(1, 6)=24.5 maximum

This problem has one minimum at (2, 0) and one maximum at (1, 6).

  1.  fx, y=5yx

 f(0, 0)=5(0)(0) f(0, 0)=0 f3, 3=533 f3, 3=12 f1, 4=541 f1, 4=19 maximum f4, 1=514 f4, 1=1 minimum

This problem has one minimum at (4, 1) and one maximum at (1, 4).

Write a system of inequalities given the graph. Then use the objective function to find the minimum and maximum.

  1.  fx, y=6x+5y

line a: m=12, yshading abovey012x7y12x72line b: m=3, b=6, yshading above y3x+6

 f1, 3=61+53 f1, 3=21 minimum f7, 0=67+50 f7, 0=42 f0, 6=60+56 f0, 6=30

Note

The inequality with a fractional y‑intercept can be found by using the points (1, 3) and (7, 0).

y3x+6y12x+72y0x0 f1, 3=21 minimum 

The minimum is at (1, 3). There is no maximum because this is unbounded.

Note

Q: Why is there no maximum for this graph?
A: This graph does not have an enclosed polygon, so this system is unbounded and therefore does not have a max.

  1.  fx, y=x34y

line w: m=14, b=0, y shading abovey14xline x: m=14, b=4, yshading belowy14x+4line y: m=undefined, x0 shading rightx0line z: m=4, y shading abovey34x4y34x16y4x13

 f0, 0=0340 f0, 0=0 f0, 4=0344 f0, 4=3   minimum f3, 1=3341 f3, 1=3.75   maximum f4, 3=4343 f4, 3=1.75

Note

y13xx0y14x+4 y4x13

This problem has one minimum at (0, 4) and one maximum at (3, −1).

Note

You can check the inequalities using technology. The graph should match the one provided.

Q: How many inequalities are needed for the bounded region? Explain.
A: 4, because there are 4 graphed lines on the coordinate plane.

Note

Problems 5–10
You can use technology to graph these problems; however, you also need to be able to transfer the information onto a coordinate plane on paper.

Graph the system of inequalities. Name all of the vertices and evaluate using the objective function for the minimum and maximum values.

  1. x+2y12x+y5x+3y15x0y0 fx, y=4.5y3x

 f5, 0=4.5035 f5, 0=15 f0, 5=4.5530 f0, 5=22.5   maximum f12, 0=4.50312 f12, 0=36   minimum f6, 3=4.5336 f6, 3=4.5

This problem has one minimum at (12, 0) and one maximum at (0, 5).

  1. yx+4y13x+2x0y0 fx, y=3x+2y

 f0, 0=30+20 f0, 0=0   minimum f3, 1=33+21 f3, 1=11 f0, 2=30+22 f0, 2=4 f4, 0=34+20 f4, 0=12   maximum 

This problem has one minimum at (0, 0) and one maximum at (4, 0).

  1. y12x+2yx+8x2y1 fx, y=2x3y

 f2, 1=2231 f2, 1=1 f4, 4=2434 f4, 4=4 f2, 3=2233 f2, 3=5   minimum f7, 1=2731 f7, 1=11   maximum 

This problem has one minimum at (2, 3) and one maximum at (7, 1).

  1. y3x+7x+2y9x0y0 fx, y=4xy

 f1, 4=414 f1, 4=0 f9, 0=490 f9, 0=36 f0, 7=407 f0, 7=7   minimum 

 

This problem has one minimum at (0, 7). This system is unbounded, so there is no maximum.

  1. Computer Concepts plans to build new computer chips with different materials, Type A and Type B. The Type A material weighs x grams. The Type B material weighs y grams. The maximum weight for the computer chips is 250 grams. Type A costs $150 per gram, while Type B costs $200 per gram. Local investors will invest no more than $45,000 in materials.

      1. Write and graph the system of inequalities to find the vertices.

Type A yields 600 mb of storage per gram, and Type B yields 750 mb of storage per gram.

  1. Determine the optimization equation for the amount of Type A and Type B material that Computer Concepts should build to maximize storage capacity.
  2. Find the optimized number of Type A and Type B material to provide the highest storage capacity for Computer Concepts.
  1. x, y: Type A, Type Bx+y250150x+200y45,000x0y0 fx, y=600x+750y

  2.  f0, 0=6000+7500 f0, 0=0 f100, 150=600100+750150  f100, 150=172,500   maximum f0, 225=6000+750225 f0, 225=168,750 f250, 0=600250+750 f250, 0=150,000

  3. Computer Concepts should use 100 grams of Type A material and 150 grams of Type B material to have a maximum storage capacity of 172,500 mb.
Note
  1. Friendship INC is creating a new set of rings for a special event. It takes x grams of silver and y grams of gold to make a ring. All rings have a combination of gold and silver. The “traditional” ring has twice as much gold as silver and weighs no more than 4 grams. The “contemporary” ring has twice as much silver as gold and weighs no more than 5 grams. The rings need a minimum of 0.5 grams of silver and a minimum of 0.5 grams of gold. Write and graph the system of inequalities to find the vertices.

    The profit earned per gram of silver is $6 per gram and $8 per gram of gold.

    How much of each type of metal should they use in their rings to optimize profit?

 fx, y=6x+8y f0.5, 0.5=60.5+80.5 f0.5, 0.5=7minimum f0.5, 1.75=60.5+81.75 f0.5, 1.75=17 f2, 1=62+81 f2, 1=20   maximum f2.25, 0.5=62.25+80.5 f40, 0=17.5    

x, y: silver, gold2x+y5x+2y4x0.5y0.5 fx, y=6x+8y

Friendship INC should use 2 grams of silver and 1 gram of gold to maximize profits.

Customer Service

Monday–Thursday 8:30am–6pm ET