Explore

Optimization Solutions

  •    Linear programming    is the mathematical approach that optimizes a function.
  •    Optimization    is finding the minimum and maximum values of a function, which allows you to    analyze    problems and scenarios.
  • Specifically, the    objective function     fx, y=x+y is used to determine the minimum and/or maximum values within the feasibility region.
  • The    feasibility region    is another way to reference the region where all possible solutions exist for a system of linear inequalities.
  • The x and yvalues that are substituted into the objective function come from the    ordered pairs    that form the    vertices    of the feasibility region on the graph.
  • A    vertex    is a point where two or more lines intersect.

Reading graphs and creating graphs accurately on the coordinate plane is critical for linear programming problems.

Example 1

Lucy is given the following graph and asked to find the minimum and maximum values using the objective function  fx, y=3xy.

Plan
Name the vertices.

Substitute each vertex into the objective function and evaluate.

Determine the minimum and maximum values.

Implement
There are 4 vertices, so there will be 4 equations to evaluate using  fx, y=3xy.

 f0, 0=300f(0, 0)=0

 f0, 5=305f(0, 5)=5   minimum

 f6.5, 3.5=36.53.5f(6.5, 3.5)=16   maximum

 f4, 1=341 f4, 1=11

Note

You can use a calculator to evaluate the objective function so that more time can be spent on analyzing the values.

The vertices are named in a clockwise order in this level when possible.

Explain

The vertex with the minimum value is    (0, 5)   . The vertex with a maximum value is    (6.5, 3.5)   .

Example 2

Write a system of inequalities given the graph. Then use the objective function to find the minimum and maximum values.

Objective function:  fx, y=yx

Plan
Mark and name all of the vertices.

Find the slope and y-intercepts.

Determine if the shading is above(↑) or below(↓) the line.

Write an inequality for each of the 4 sides of the figure.

Note

Labeling the vertices with capital letters is not required. However, it may be helpful when determining all of the equations on a given coordinate plane.

Implement

Vertices:    A (1, 1)         B (0, 5)   
  C (2, 5)         D (4, 4)   

Note

The vertices can also be written directly on the coordinate plane.

Lines:

ABm=4, b=5, y4x+5

BCm=0, b=5, y5

CDm=12, b=6, y12x+6

ADm=1, b=0, yx

Function:  fx, y=yx

 f1, 1=11 f1, 1=0minimum

 f0, 5=50 f0, 5=5maximum

 f2, 5=52 f2, 5=3

 f4, 4=44 f4, 4=0minimum

Explain

This problem has two minimums at (1, 1) and (4, 4), and a maximum at (0, 5).

Customer Service

Monday–Thursday 8:30am–6pm ET