Explore: Graphing for Linear Programming Solutions

  • If a linear programming problem does not provide a graph, you must    create the graph yourself    using the provided system of inequalities.
  • Once the graph is created,    label the vertices    so you can find the minimum and/or maximum using the objective function.
  • Use    substitution    to confirm that the vertices are correct. To confirm, replace the variables with the point (or vertex) where the two equations or inequalities intersect.
  • Graphs of systems of inequalities can have feasibility regions that are    bounded    or    unbounded   .
  • A bounded region is an    enclosed   , shaded region with vertices that provide    at least    one minimum    and    one maximum using the objective function.
  • An unbounded region continues infinitely in at least one direction with vertices that provide a minimum    or    a maximum, but not both. The minimum or maximum depends on the    direction    of the shaded region.
Image2

Example 3

Find the minimum and maximum values using the objective function:  f(x, y)=5y2x. Explain if the system is bounded or unbounded.

y2x+6x+y4x0y0

Plan
Graph system of inequalities.

Name all the vertices.

Evaluate the objective function using the vertices.

Name the minimum and maximum values.

Implement

 f0=5020 f0, 0=0

 f0, 4=5420 f0, 4=20   maximum

 f2, 2=5222 f2, 2=6

 f3, 0=5023 f3, 0=6   minimum

Explain

This is a    bounded    system. The maximum is    (0, 4)    and the minimum is    (3, 0)   .

Example 4

Find the minimum and maximum values using the objective function: h(x, y)=x+y1.

y2x3y3y13x4

 

h(x, y)=x+y1h(0, 3)=(0)+(3)1h(0, 3)=4h(3, 3)=(3)+(3)1h(3, 3)=1

The minimum is (0, –3). There is no maximum because the system is unbounded. 

Customer Service

Monday–Thursday 8:30am–6pm ET