Practice 1 Solutions

Note

Problems 1–4
When dividing by a monomial, be sure that your student simplifies the numerical coefficients as well as the variables. The variables should be simplified using exponent rules.

Simplify. Write the polynomial expression with positive exponents.

  1. 20a3b215ab3+10a2b5ab

20a3b25ab15ab35ab+10a2b5ab

4a2b3b2+2a

  1. 13x4y5+39x226÷13x2y

13x4y5+39x22613x2y13x4y513x2y+39x213x2y2613x2y

x2y4+3y2x2y

  1. 2pq4+12p2q29p3q+8pq3p3q

2pq43p3q+12p2q23p3q9p3q3p3q+8pq3p3q

2q33p24qp+383p2

  1. 4x45x3+8x26x+24x1

4x44x5x34x+8x24x6x4x+24x

x35x24+2x32+12x

Simplify. Write the remainder as a fraction if one exists.

  1. 3y3+17y2+22y+8÷y+4

y+43y2+5y+23y3+17y2+22y+83y3+12y25y2+22y5y2+20y2y+82y+80

3y2+5y+2

Note

Q: How do you determine where to place the terms in the quotient?
A: By place-value according to the degree of the term.

Q: How can you determine if your solution is correct?
A: Find the product of the quotient and the divisor.

Q: What if your solution also contains a remainder?
A: You find the product first and then add in the remainder.

Q: When an expression is raised to the negative first power is this the dividend, divisor, quotient or remainder.
A: The divisor

  1. x23x+12x33x27x+3

x23x+12x+32x33x27x+32x36x2+2x3x29x+33x29x+30

2x+3

  1. x13x2+2x+1

x13x+53x2+2x+13x23x5x+15x56 +6x1

3x+5+6x1

  1. x43x2+x5x+11

x+1x3x22x+3x4+0x33x2+x5x4+x3x33x2x3x22x2+x2x22x3x53x+38 8x+1

x3x22x+38x+1

  1. 2y14y28y+3

2y12y34y28y+34y22y6y+36y+30

2y3

  1. 3x3+2x28x+2

x+23x24x+83x3+2x2+0x83x3+6x24x2+0x4x28x8x88x+1624 24x+2

3x24x+824x+2

  1. 3x4+2x2+16x+11x2+2x+1

x2+2x+13x26x+113x4+0x3+2x2+16x+113x4+6x3+3x26x3x2+16x6x312x26x11x2+22x+1111x2+22x+110

3x26x+11

  1. 2x3+13x2x110x521

x522x2+18x+442x3+13x2x1102x35x218x2x18x245x44x11044x1100

2x2+18x+44

  1. 5a330a2+705a

5a35a30a25a+705a

a26a+14a

  1. 5y4+3y3+8÷y+2

y+25y37y2+14y285y4+3y3+0y2+0y+85y4+10y37y3+0y27y314y214y2+0y14y2+28y28y+828y5664 +64y+2

5y37y2+14y28+64y+2

Note

Problems 15–16
Remind your student to use their Formula Sheet when working with figures.

  1. The volume of a rectangle prism is 2x34x16x+42 cm3. The area of the base is 2x210x+14 cm2. Find the height.

V=Bh2x34x216x+42=2x210x+14hh=2x34x216x+422x210x+14

2x210x+14x+32x34x216x+422x310x2+14x6x230x+426x230x+420

The height is x + 3 cm.

  1. The area of a triangle is x2+8x+7  m2. The height is + 1 meters. Determine the length of the base.

A=12bh2A=bh2x2+8x+7=bx+1b=2x216x+14x+1x+12x+142x2+16x+142x2+2x14x+1414x+140

The base is 2x + 14 meters.

Note

Q: How can you clear the fraction from the area of a triangle formula?
A: Multiply both sides of the formula by 
2.

Your student may also factor this problem to find the length of the base.

Customer Service

Monday–Thursday 8:30am–6pm ET