Practice 2 Solutions

Determine if the given expressions will form an identity.

  1. 2z+122z1 and 2z2z+11
4z2+4z+12z+24z2+2z+3 4z2+2z1
  1. x+2x+5x7x3 and x1x+7x10+6
x2+7x+10x210x+21 x2+7x+10x2+10x2117x11 x1x+7x+10+6 x117+617x17+617x11
  1. 2x2y24x29y2 and x2y+2y2+y2x+3x3 
2x2y24x29y2 x2y24+y2x29x2y24x2+x2y29y2 2x2y24x29y2
  1. ab+3bb+3 and bab+3ab 
ab+3ab23b ab+3ab23b
Note

The right side can be factored as abb+3. The left side can be factored as b+3ab to show the identity.

  1. a+23 and a+2a22a+4+6aa+2 
a+2a+2a+2 a2+4a+4a+2a3+2a2+4a2+8a+4a+8 a3+6a2+12a+8 a32a2+4a+2a24a+8+6a2+12a a3+6a2+12a+8
  1. x24x29=x+2x3x2x6
x413x2+36 x2x6x2x6x4x36x2x3+x2+6x6x2+6x+36 x42x311x2+12x+36
Note

You may have factored to disprove the identity.

Find the missing value(s) of the given equation.

  1. Bx52xC=6x211x35
2Bx2BCx10x+5C=6x211x352Bx2=6x22B=6B=3 5C=35C=7
  1. Ax3+B3=5x+425x220x+16
A3x3+B3=125x3+64A3=125A=5 B3=64B=4
  1. Qx2+3x+Y4x25x1=9x2+8x+7
Qx24x2=9x2Q4=9Q=13 Y+1=7Y=6
  1. Gx4x+5B=3x2+11x+8
Gx2+5Gx4x20B=3x2+11x+8Gx2=3x2G=3 20B=8B=28B=28
  1. Wx+12x5+3xRx+1=7x27x7
2Wx25Wx+2x5+3x2+3xRxR=7x27x72Wx2+3x2=7x22W+3=72W=4W=2 5R=7R=2
  1. 5x2+Hx2Vx2Hx3=14x+1
5x2Vx2=0x25V=0V=5 Hx+Hx=142H=14H=7

Customer Service

Monday–Thursday 8:30am–6pm ET