Practice 1 Solutions

Determine if the given expressions will form an identity.

  1. a+b3 and aa2+ab+2aba+b+b2a+b

Left side:  a+b3

Right side: aa2+ab+2aba+b+b2a+b

a+ba+ba+ba2+2ab+b2a+ba3+a2b+2a2b+2ab2+ab2+b3a3+3a2b+3ab2+b3

a3+a2b+2a2b+2ab2+ab2+b3a3+3a2b+3ab2+b3

Yes, this is an identity.

  1. 6x2225x+28 and 3x2x148x+7
6x250x56 6x242x8x56 6x250x56

Yes, this is an identity.

  1. 12n7n+8 and 12nn+2656n+1
12n2+4n7n5612n23n56 12n2+13n56n5612n243n56

No, this is not an identity.

  1. 3g2+103g+2+1 and 3g2+103g+39
9g2+30g+20+1 9g2+30g+21 9g2+30g+309 9g2+30g+21

Yes, this is an identity.

  1. x5x+85x8 and x5x282
x25x264 25x264x x25x264 25x364

No, this is not an identity.

  1. 2ab2+45ab+5ab2 and 4abab+4+ab25ab+4
4a2b2+20ab+25a2b2 29a2b2+20ab 4a2b+16ab+25a2b2+4ab 29a2b2+20ab

Yes, this is an identity.

Find the missing value(s) in the given equation.

Note

Problems 7–12
You can check your work using substitution.

  1. Rx+42xR=6x2x12

2Rx2R2x+8x4R=6x2x122Rx2=6x22R=6R=3

  1. Bx2Px+8+4x2+1x15=10x214x7
Bx2+4x2Px+1x+815=10x214x7B+4=10B=6 P+1=14P=15P=15
  1. 3xWx+Q+8Wx+Q=12x2+35x+8

3Wx2+3Qx+8Wx+8Q=12x2+35x+83Wx2=12x23W=12W=4

3Qx+8Wx=35x3Q+8W=353Q+84=353Q+32=353Q=3Q=1

Note

First solve for W; then solve for Q.

  1. Ax+32=25x2+30x+9

A2x2+6Ax+9=25x2+30x+9A2x2=25x2A2=25A=±5A=5

Note

Because the middle term is positive, A must be positive. You may also solve the equation 6A = 30 to find that A = 5.

  1. 5x2Gx+19x2Mx+2=Gx2+3x1

4x2Gx+Mx1=Gx2+3x14x2=Gx2G=4

Gx+Mx=3x4+M=3M=7

Note

First solve for G ; then solve for M.

  1. Rx+KRxK=36x281; Assume R and K are whole numbers.
R2x2K2=36x281R2=36R=±6R=6 K2=81K2=81K=±9K=9

Customer Service

Monday–Thursday 8:30am–6pm ET