The Horizontal Line Test Solution
Note
A graph can still be made on a coordinate plane even when a function does not exist.
Example 4
For the given graph:
-
- Name the domain and range for the graph and its inverse.
- Explain whether or not the graph represents a function.
- If the graph is a function, determine if it is one-to-one.
- If the graph is a function, determine if the inverse is also a function.
Given
Domain:
Range:
Inverse
Domain:
Range:
The parabola is a function because it passes the VLT. However, it is not one-to-one
because it fails the HLT. This also means that the inverse is not a function.

You can plot the inverse on the coordinate plane to help see if the inverse is a function using the VLT and determine the domain and range for the inverse if needed.

For MM:


Example 5
For the given graph:
Name the domain and range for the graph and its inverse.
Explain whether or not the graph represents a function.
If the graph is a function, determine if it is one-to-one.
If the graph is a function, determine if the inverse is also a function.
Given
Domain: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>x</mi><mo>|</mo><mi>x</mi><mo>∈</mo><mi>R</mi></mrow></mfenced></mstyle></math>
“`
Range: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>y</mi><mo>|</mo><mi>y</mi><mo>∈</mo><mi>R</mi></mrow></mfenced></mstyle></math>
“`
Inverse
Domain: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>x</mi><mo>|</mo><mi>x</mi><mo>∈</mo><mi>R</mi></mrow></mfenced></mstyle></math>
“`
Range: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>y</mi><mo>|</mo><mi>y</mi><mo>∈</mo><mi>R</mi></mrow></mfenced></mstyle></math>
“`
The (cubic) graph is a function because it passes the VLT. The graph also passes the HLT. This means that the given function is one-to-one, and its inverse is also a function.

Naming the graph is good practice to retain recognition of equations graphically.
For MM


Example 6
For the given graph:
Name the domain and range for the graph and its inverse.
Explain whether or not the graph represents a function.
If the graph is a function, determine if it is one-to-one.
If the graph is a function, determine if the inverse is also a function.
Given
Domain: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>x</mi><mo>|</mo><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mo>–</mo><mn>4</mn></mrow></mfenced></mstyle></math>
“`
Range: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>y</mi><mo>|</mo><mi>y</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>≥</mo><mn>1</mn></mrow></mfenced></mstyle></math>
“`
Inverse
Domain: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>x</mi><mo>|</mo><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>1</mn></mrow></mfenced></mstyle></math>
“`
Range: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>y</mi><mo>|</mo><mi>y</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>≥</mo><mo>–</mo><mn>4</mn></mrow></mfenced></mstyle></math>
“`
The (square root) graph is a function because it passes the VLT. The graph also passes the HLT. This means that the given function is one-to-one, and its inverse is also a function.

For MM
