Practice 2 Solutions

Complete the statement with always, sometimes, or never.

  1. When the denominator contains an imaginary number the denominator    always    needs to be rationalized.
  2. Real and imaginary numbers are    always    part of the complex number system.

Simplify. Then classify by all sets to which it belongs: real, pure imaginary, complex.

  1. 448+34i7

4i42·3+i34i716i3+4i237i39i3+413

43+9i3Complex

  1. 6+i1012i10360

726i10+12i10i21026i107210i272101

82Real, complex

Simplify.

  1. 9711i

9711i7+11i7+11i63+99i49121i263+99i49121163+99i49+121

63+99i170

  1. 42+3

2i2+i32i32i32i22i232i2322i221321323+2i22+3

23+2i25

  1. 132i5i

132i5iii13i2i25i213i2151

2+13i5

  1. 8ix3i+3i3x16

8ix24i2+3i3x4i8ix24i2+9ix12i217ix36i217ix361

17ix+36

  1. 9x+22

9x+i29x+i281x2+9ix2+9ix2+i22281x2+18ix2+21

81x2+18ix22

  1. 4+49225

4+7i25i820i+14i35i286i35186i+35

436i

  1. 25i1+3i

25i1+3i13i13i26i5i+15i219i2211i+151191211i151+9

1311i10

  1. 8+126i

8+2i36i4+i33iii4i+i233i24i+1331

4i33

Determine if the following expressions form an identity.

  1. 42003i+32 and 2018i+128+64

410i23i+4i240i212i+4i244i212i203i2i+24i2+8i60i220i+24i2+8i84i212i

This is NOT an identity because the expressions do NOT equal one another.

  1. 72i21+6i and 3+i4912i

147+42i42i12i214712115914736i+49i12i2147+13i121159+13i

This is NOT an identity because the expressions do NOT equal one another.

Determine the value of Q that makes the identity true.

  1. 7i2+i=Q12i

7i12i=Q2+i7i14i2=2Q+Qi7i141=2Q+Qi14+7i=2Q+Qi14=2QQ=7

Q=7

  1. 103i2+Qi=23+4i

20+10Qi6i3Qi2=23+4i20+10Qi6i3Q1=23+4i20+3Q+10Qi6i=23+4i20+3Q=2310Qi6i=4i3Q=310Qi=10iQ=1Q=1

Q=1

Customer Service

Monday–Thursday 8:30am–6pm ET