Practice 1 Solutions

Evaluate.

Note

Use the Formula Sheet to help with the rules for the imaginary unit i.

  1. i29

29÷4=7 R1i47·i1·i

i

  1. i75

75÷4=18 R3i418·i31·i

i

  1. i16

16÷4=4i44

1

  1. i50

50÷4=12 R2i412·i21·1

–1

  1. i120

120÷4=30i430

1

  1. i101

101÷4=25 R1i425·i1·i

i

  1. i38

38÷4=9 R2i49·i21·1

–1

  1. i67

67÷4=16 R3i416·i31·i

i

Simplify.

Note

Q: Why must the imaginary unit i be simplified out when the radicand is negative?

A: Because the rules to simplify radicals are only true for real numbers.

  1. 18

i32·2

3i2

  1. 36·16

i62·i426i·4i24i2

–24

Note

Remember to simplify out 1before multiplication of any radicands. If your answer is positive, you did not write 1as i in your first step.

  1. 54

i33·2

3i6

  1. 32

i25

4i2

  1. 144

i122

12i

  1. 310·735

3i2·5·7i5·721i252·2·7105i214

10514

Note

Q: What is another way to write i2?

A: Negative one.

  1. 281·24

2i92·i23·318i·2i636i26

366

  1. 98

i72·2

7i2

Simplify. Then classify by all sets to which it belongs: real, pure imaginary, complex.

Note

Q: What classification can you use for every number?

A: Complex


Q: Why is it a good math practice to simplify before you classify numbers?

A: Because the simplified answer may not be the exact classification you originally expected.

  1. 12

23

Real, complex

  1. 16+8

4+2i2

Complex

  1. 121

11i

Pure imaginary, complex

  1. 5+49

5+712

Real, complex

  1. 3i

Pure imaginary, complex

  1. 25

5i

Pure imaginary, complex

  1. 49·4

7i·2i14i214114

Real, complex

  1. 139

133i

Complex

Customer Service

Monday–Thursday 8:30am–6pm ET