Practice 2 Solutions

  1. Explain why the absolute value of x must be taken when n is an even exponent.

    Sample: When the base is raised to an even exponent, it must be positive.

Solve. Check for extraneous solutions.

  1. 4x13=3x413

4x133=3x4133Check4x=3x44413=34413x=41613=1613   

x = – 4

Note

Remember that it is possible to take an odd root of a negative number because an odd number of negative numbers will always be negative.

  1. h29+3=h

h29=h3Checkh292=h32329+3=3h29=h26h+999+3=36h=180+3=3   h=3

h = 3

  1. a=a82

a+2=a8a+22=a82a+4a+4=a84a=12a=3

No real solution

Note

a has no real solutions because taking the square root does not result in a negative  number.

  1. (2w5)23=9

2w52332=932932=9123=33=272w5=27case 1case 22w5=27    2w5=272w5=272w=322w=22w=16w=11 

 

 Check(2115)23=9(225)23=9(27)23=9(273)2=9(3)2=9   (2165)23=9(325)23=9(27)23=9(273)2=932=9   

w = – 11, 16

Note

Problems 6–12

Recall that xnddn=x , when n is an even number. A negative number raised to an even exponent is positive.

  1. xx4=1

x1=x4Checkx12=x422542544=1x2x+1=x452254164=12x=55294=1x=525232=1x2=52222=1   x=254

x=254

  1. m+7125=m

m+712=m+5Checkm+7122=m+526+7125=6m+7=m2+10m+251125=60=m2+9m+18156   0=m+6m+3m=6, 33+7125=34125=325=3   

m = – 3

  1. 2x232=54

x232=27Checkx23223=2723211232=542723=27132=32=92932=54x2=9293=54x=11233=54227=54   

x = 11

  1. p+314+5=3

p+314=2

No solution. An even root cannot equal a negative  number.

  1. 4x+8=1

4x+82=12Check4x+8=1474+8=14x=77+8=1x=741=1   

x=74

  1. 63u+1=1

3u+1=5Check3u+1=5638+1=13u+12=52624+1=13u+1=25625=13u=2465=1   u=8

u = 8

  1. b3453=13

b345=16b34554=16541654=16145=25=32b3=32case 1case 2b3=32      b3=32b3=32b=35b=29 

Check(353)453=13(32)453=13(325)43=13(2)43=13163=13   (293)453=13(32)453=13(325)43=13(2)43=13163=13

b = – 29, 35

  1. y+2=2y3

y+22=2y32Checky+2=2y35+2=253y=57=7   

y = 5

  1. 11q+3=2q

11q+32=2q2Check11q+3=4q21114+3=2140=4q211q3114+124=124q+1q3=014=12q=14, 31212   113+3=2333+3=636=6   

q=3

  1. 5+x=x+1

5+x2=x+12Check5+x=x+2x+15+4=4+14=2x9=2+12=x3=3   22=x2x=4

x = 4

  1. The area of the circular base of a cone is 25π in2. The height of the cone is 2 times the radius value. Use the formula A=π3V2π23 to find the volume of the cone. Keep your answer in terms of π.

25π=π3V2π2325=3V2π232532=3V2π2332125=3V2πV=250π3

V=250π3in3

Note

Q: Why was it not necessary to determine Case 1 and Case 2?

A: Case 2 would be extraneous. Volume cannot be negative.

Customer Service

Monday–Thursday 8:30am–6pm ET