Practice 2 Solutions

Simplify. Write answers in simplified radical form.

  1. 24x6y10z123

23·3x6y10z123233·313x63y103z12321·313x2y313z4

2x2y3z4 3y3

  1.  120gh8j19

23·3·5gh8j19232·312·512g12h82j1922112·312·512g12h4j9122h4j92·3·5gj

2h4j930gj 

  1. 625f28g484

54f28g484544f284g484

5f7g12

  1. 38x3y13z1515

385x35y135z1553135x35y235z33y2z3 33x3y35

3y2z3 27x3y35

  1.  ±64a7b3c1012

±642a72b32c102±62a312b112c5

±36a3bc5ab

  1. 54x4y33

2·33x4y33213·333x43y33213·31x113y1

3xy 2x3

  1. 243q5v95

35q5v95355q55v9531q1v145

3qv v45

  1. 48x10y6z214

24·3x10y6z214244·314x104y64z2421·314x224y124z24

2x2y3x2y2z24

  1. 5x2xy·2xx3y

10x3x4y210x3x42y2210x3x2y1

10x5y

  1. 7c3n43·42c17n133

7·42c20n1732·3·72c20n173213·313·723c203n173213·313·723c623n523c6n5 2·3·72c2n23

c6n5 294c2n23

  1. 32b47d294·13b50d84

25·13b97d374254·1314b974d3742114·1314b2414d9142b24d92·13bd4

2b24d926bd4

  1. 12m7n14p714·4m5n2p314

12·4m12n16p101424·3m12n16p1014244·314m124n164p10421·314m3n4p224

2m3n4p2 3p24

  1. 11x224x2y2·7x82y8

77x1024·2x2y1077x1024·3x2y1077x10242·312x22y10277x1022·312x1y577·22x11y53

308x11y53

  1. 576n4u183·13nu73nu3

65nu79n5u19365nu793n53u19365nu73n123u61365·73n2u7 n2u3

22,295n2u7 n2u3

  1. Determine the area of a triangle with a base of 12a3b412units and a height of 6a23abunits. Write your answer in simplified radical form.

A=12bhA=1212a3b412·6a23ab=3a212·3a4b512=3a222·32a4b512=3a2222·322a42b52=3a221·31a2b212=3·2·3a4b2b

A=18a4b2b units2

  1. Determine the area of the rectangle with the dimensions 8xy313 and 216x813units.

A=bhA=8xy313·216x813=23xy313·63x813=23·63x9y313=233·633x93y33=21·61x3y1

A=12x3y units2

Customer Service

Monday–Thursday 8:30am–6pm ET