Practice 1 Solutions

Simplify. Write answers in simplified radical form.

  1. ±12a10b6

±22·3a10b6±222·312a102b62±21·312a5b3

±2a5b33

Note

Q: What happens when the index does not divide into the exponent evenly?

A: This is a term that will be the radicand.

  1. (113q4c10)12

1132q42c10211112q2c5

11q2c511

Note

Q: What is the index of the problem? Explain.

A: 2, because this is the denominator of the fractional exponent.

  1. 32n155

25n155255n155

2n3

  1. 85v13w3313

235v13w3313215v13w33132153v133w33325v413w11

32v4w11 v3

  1. 81k44u13r514

34k44u13r514344k444u134r51431k11u314r1234

3k11u3r12 ur34

  1. 76g7h1614

764g74h1647124g134h47|g|h4 72g34

7|g|h4 49g34

Note

You should maintain all denominators using the index so the answer can be written in simplified form. This is why 124 is used rather than 112.

  1. 125x33y143

53x33y143533x333y14351x11y423

5x11y4 y23

  1. 16b19c13d345

24b19c13d345245b195c135d345245b345c235d645b3c2d6 24b4c3d45

b3c2d6 16b4c3d45

Note

Q: Why is there no coefficient outside of the radical?

A: Because 16 is 24 and the exponent is smaller than the index.

  1. 312xy3·63x5y3

1812·3x6y61822·32x6y618222·322x62y6218·2·3x3y3

108x3y3

  1. 4x7g8h2·521g5h11

20x7·21g13h1320x72·3g13h1320x722·312g132h13220x71·312g612h612

140xg6h63gh

Note

Q: Why does x not belong inside absolute value bars?

A: Because x was already outside the radical.

  1. 7v2 4v3·22v3

14v2 4·2v2314v2 23v2314v2233v2314v221v23

28v2 v23

  1. 34a3b515·32a4b1015

36a7b1515365a75b1553115a125b3

3ab3 3a25

  1. 27a10b9c4·18a26b21c34

27·18a36b30c4435·2a36b30c44354·214a364b304c443114·214a9b724c13a9b7c3·2b24

3a9b7c6b24

  1. 11p4q6·2133q16

2111·33p4q2221112·3p4q22211122·312p42q22221111·312p2q11

231p2q113

Note

Problems 15–16

Remember to use absolute value bars when an even index results in an odd power after simplifying.

Q: What is needed in your answer when the index is even and their result is an odd power?
A: Absolute value bars around the base with an odd power.

  1. Find the area of a rectangle with the dimensions 5x3y6z12 and 5xy units. Write your answer in simplified radical form.

A=lwA=5x3y6z12·5xy12=52x4y7z12=522x42y72z12=51x2y312z12

A=5x2y3yz units2

  1. A triangle has a height of 21a4b713centimeters, and base of 49ab23centimeters. Find the area of the triangle in simplified radical form. 

A=12bhA=1249ab213·21a4b713=1249·21a5b913=1273·3a5b913=12733·313a53b93=1271·313a123b3

A=7ab3 3a232 cm2

Customer Service

Monday–Thursday 8:30am–6pm ET