Graphing Reciprocal Functions Solutions

  • To graph a simple reciprocal function:
      1. Find    the values of a, h, and k   .
      2. Plot the    asymptotes    and any    intercepts    on the graph.
      3. Sketch the hyperbola using the value of a to determine     placement    and    stretch or compression   .
  • Be sure to    label the key details    of the graph because the coordinate planes are unscaled.
  • The table of the parent function shows that many of the values are    fractional   .
  • Therefore, when graphing a reciprocal function, sketch the    hyperbola    rather than plot points.

Example 6

Graph the asymptotes and intercepts. Sketch the hyperbola.

 fx=1x+3

Plan

Name a, h, k

Graph asymptotes


Solve for any intercepts


Graph intercepts


Sketch hyperbola

Implement
a=1, h=0, k=3

Intercepts:

0=1x+33=1x3x=1x=13

no y-intercept

Explain

The hyperbola is a reflection because a = –1. The graph will shift up 3 spaces from the parent graph.

Note

You should use a, h, and k to describe the graph (written or verbal) before sketching so you know what to expect from the graph.

Example 7

Graph the asymptotes and intercepts. Sketch the hyperbola.

gx=2x42

a=2, h=4, k=2

Intercepts:

0=2x422=2x42x4=2x4=1x=55, 0

g0=2042g0=122g0=2.50, 2.5

The hyperbola stretched, making it farther away from the asymptotes when a = 2. The values of h and k shift the function right 4, and down 2.

Example 8

Graph the asymptotes and intercepts. Sketch the hyperbola.

 fx=13x1

a=13, h=1, k=0

Intercepts:

no x-intercept

 f0=1301 f0=130, 13

The hyperbola is closer to the asymptotes since the value of a is between 0 and 1. The graph shifts right one space.

Customer Service

Monday–Thursday 8:30am–6pm ET