Lesson 1: Practice 1 Solutions

  1. Simplify the fractions below. Then convert each fraction to a decimal.
  Simplified Fraction Decimal  


1640
16÷840÷8=25 0.40  
33121 33÷11121÷11=311 0.27¯  
1575 15 ÷ 1575 ÷ 15=15 0.20  
75125 75 ÷ 25125 ÷ 25=35 0.60  
7224 72 ÷ 2424 ÷ 24=31 3.0  

 

List each vocabulary word beside its description.

Word Bank

Real Numbers
Whole Numbers
Rational Numbers
Natural Numbers
Integers
Irrational Numbers

  1. Decimals that do not repeat or terminate.    Irrational numbers   
  2. All existing numbers, not fictional numbers or terms.    Real numbers   
  3. Positive whole numbers, starting with 1, that are used in counting.    Natural numbers   
  4. Positive and negative whole numbers, as well as fractions that simplify to a positive or negative whole number.    Integers   
  5. Positive numbers beginning with 0.    Whole numbers   
  6. Positive and negative numbers, including fractions that simplify to terminating or repeating decimals.    Rational numbers   
  1. Complete the table below by coloring in or marking each category the number fits into.
  Irrational Numbers Real Numbers Rational Numbers Integer Whole Numbers Natural Numbers
172   X X X    
0.93103448275… X X        
3.910472… X X        
1518   X X      
  1. Construct a number line and plot each of the values below.

7,  314,  7.25,  8

  1. Is the value rational or irrational? Provide evidence to support your answer.

279

The value is a rational number because irrational numbers can not be recorded as fractions. To further prove that the value is rational, simplify the fraction to a whole number.

Proof: 27÷99÷9=31=3

Customer Service

Monday–Thursday 8:30am–6pm ET