The Horizontal Line Test Solution

  • The    horizontal line test (HLT)    is a visual representation that determines if the     inverse    of a graph on the coordinate plane is a function by running a horizontal line  across the graph.
  • If the horizontal line touches    more than one point    at a time, the inverse of the graph is not a function.
  • The HLT also determines if a function is    one-to-one   .
  • A one-to-one function has    one output    for each input. (In other words, the domain AND range values are both unique for a one-to-one function.)
Note

A graph can still be made on a coordinate plane even when a function does not exist.

Example 4

For the given graph:

    • Name the domain and range for the graph and its inverse.
    • Explain whether or not the graph represents a function.

    • If the graph is a function, determine if it is one-to-one.
    • If the graph is a function, determine if the inverse is also a function.

Given
Domain: x|xR
Range: y|yR, y2
Inverse
Domain: x|xR, x2
Range: y|yRThe parabola is a function because it passes the VLT. However, it is not one-to-one because it fails the HLT. This also means that the inverse is not a function.

You can plot the inverse on the coordinate plane to help see if the inverse is a function using the VLT and determine the domain and range for the inverse if needed.

For MM:

Example 5

For the given graph:

Name the domain and range for the graph and its inverse.

Explain whether or not the graph represents a function.

If the graph is a function, determine if it is one-to-one.

If the graph is a function, determine if the inverse is also a function.

Given
Domain: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>x</mi><mo>|</mo><mi>x</mi><mo>&#x2208;</mo><mi>R</mi></mrow></mfenced></mstyle></math>
“`
Range: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>y</mi><mo>|</mo><mi>y</mi><mo>&#x2208;</mo><mi>R</mi></mrow></mfenced></mstyle></math>
“`

Inverse
Domain: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>x</mi><mo>|</mo><mi>x</mi><mo>&#x2208;</mo><mi>R</mi></mrow></mfenced></mstyle></math>
“`
Range: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>y</mi><mo>|</mo><mi>y</mi><mo>&#x2208;</mo><mi>R</mi></mrow></mfenced></mstyle></math>
“`

The (cubic) graph is a function because it passes the VLT. The graph also passes the HLT. This means that the given function is one-to-one, and its inverse is also a function.

Naming the graph is good practice to retain recognition of equations graphically.

For MM

Example 6

For the given graph:

Name the domain and range for the graph and its inverse.

Explain whether or not the graph represents a function.

If the graph is a function, determine if it is one-to-one.

If the graph is a function, determine if the inverse is also a function.

Given
Domain: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>x</mi><mo>|</mo><mi>x</mi><mo>&#x2208;</mo><mi>R</mi><mo>,</mo><mo>&#xA0;</mo><mi>x</mi><mo>&#x2265;</mo><mo>&#x2013;</mo><mn>4</mn></mrow></mfenced></mstyle></math>
“`

Range: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>y</mi><mo>|</mo><mi>y</mi><mo>&#x2208;</mo><mi>R</mi><mo>,</mo><mo>&#xA0;</mo><mi>y</mi><mo>&#x2265;</mo><mn>1</mn></mrow></mfenced></mstyle></math>
“`

Inverse
Domain: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>x</mi><mo>|</mo><mi>x</mi><mo>&#x2208;</mo><mi>R</mi><mo>,</mo><mo>&#xA0;</mo><mi>x</mi><mo>&#x2265;</mo><mn>1</mn></mrow></mfenced></mstyle></math>
“`
Range: “`MathML
<math style=”font-family:Times New Roman;font-size:18px;” xmlns=”http://www.w3.org/1998/Math/MathML”><mstyle mathsize=”18px”><mfenced mathcolor=”#C15300″ open=”{” close=”}”><mrow><mi>y</mi><mo>|</mo><mi>y</mi><mo>&#x2208;</mo><mi>R</mi><mo>,</mo><mo>&#xA0;</mo><mi>y</mi><mo>&#x2265;</mo><mo>&#x2013;</mo><mn>4</mn></mrow></mfenced></mstyle></math>
“`

The (square root) graph is a function because it passes the VLT. The graph also passes the HLT. This means that the given function is one-to-one, and its inverse is also a function.

For MM

Customer Service

Monday–Thursday 8:30am–6pm ET