Targeted Review Solutions

Simplify. Write answers in radical form.

  1. 162x8y144

2·34x8y144214·344x84y144214·31x2y324

3x2y32y24

  1. 53235

532·35=59255325=152515255515525

352

Simplify and name the numbers using all classifications for the set of real numbers.
{, 𝕎, , , 𝕀, }

  1. 2733

3 – 3

0, W, , , 

  1. 121

2

2, , W, , , 

  1. 12

22·3

23, 𝕀, 

  1. 5882

36

12, , 

  1. Solve.

    x11x22=6x

x±2, 0xx11=6x22x211x=6x2125x2+11x12=0x+35x4=0

x=3, 45

  1. Determine the value of Q to make the polynomial identity true.
    3xQ2=9x2163x4

9x26Qx+Q2=9x248x+646Qx=48x6Q=48

Q = 8

Multiple Choice

C

  1. Simplify.
    564 
  1. 3+2

  2. 30+2010

  3. 6+42

  4. 6+42

Note
  1. This option incorrectly simplified out a 2. This is not possible because the coefficient of the radical is one.
  2. This option multiplies a coefficient and a radicand together.
  3. The negative sign is missing from the answer.

     564(6+46+4)56+2061656+20105(6+4)5(2)6+42

B

  1. Determine the number line that best matches the solution to the compound inequality.
    – 3+ 1 > 4  OR  3+ 1 ≥ 4
  1.  

    3x>3OR3x3x<1x1

Note
  1. There should be an open point at – 1 and a closed point at 1.
  2. This option represents an AND inequality, not an OR inequality.
  3. The points are marked, but the number line is not shaded.

A

  1. Select the graph of the quadratic function gx=x32+1. 
  1. Vertex form of a parabola is y=xh2+k.

    (hk) = (3, 1)

    h shifts the graph right 3 spaces and k shifts the graph up 1 space

Note

B, C) These options have the opposite sign for h, making the graph shift left rather than right.

C, D) These options have the opposite sign for k, making the graph shift down rather than up.

  1. Select the expressions that form conjugates.
  1.  

    32

     

  2.  

    32+1

     

  3.  

    321

     

  4. ± 1

Note

Conjugates are written in the form abcd and ab+cd where the terms are identical for both binomials, but one pair adds and the other pair subtracts the terms.

Problem 1 2 3 4 5 6 7 8 9 10 11 12
Origin L11 L12 A1 A1 A1 A1 L9 L4 L12 A1 A1 L12

L = Lesson in this level, A1 = Algebra 1: Principles of Secondary Mathematics, FD = Foundational Knowledge

Customer Service

Monday–Thursday 8:30am–6pm ET