Practice Solutions

For problems 12, solve for t.  

  1. R=ptA

    AR=ptAAARp=ptpt=ARp
  1. v=v0+at

     v=v0+atv0v0vv0a=atat=vv0a or t=vav0a

For problems 3–4, use the equation
 k=12mv2.
Recall, the inverse of squaring a term is taking the square root.

  1. Solve for m.

    2k=12mv22 2kv2=mv2v2m=2kv2
  1. Solve for v.

    2k=12mv222km=mv2m2km=v2v=±2km
Note

You will learn why the +/– symbol is included in the answer in Algebra 2. If this is not included in your answer at this point, that is okay.

Solve for the indicated variable.

  1. Ax+By=C; y

       Ax+By=CAx           AxByB=Ax+CBy=Ax+CB or y=ABx+CB
  1. y=mxx1+y1; x

     y=mxx1+y1y1                y1yy1m=mxx1myy1m=xx1+x1+x1x=yy1m+x1

For problems 78, solve for h.

  1. S=2πrh+2πr2 

    S=2πrh+2πr22πr22πr2S2πr22πr=2πrh2πrh=S2πr22πr or h=S2πrr
  1. V=π3hr2+rR+R2

     3πV=π3hr2+rR+R23π3Vπr2+rR+R2=hr2+rR+R2r2+rR+R2h=3Vπr2+rR+R2

Solve for the indicated variable.

  1. F=Gm1m2r2; r

     F=Gm1m2r2Fr2F=Gm1m2Fr2=Gm1m2Fr=±Gm1m2F 

Note

Remember a subscript is not an exponent.

  1. T=2πmk;m

     T=2πmkT2π2=mk2kT24π2=mkkm=kT24π2        OR kT2π2=mkkm=kT2π2

Note

Remember the inverse operation for the square root is squaring a term.

  1. S=2lw+2lh+2wh; w

    S=2lw+2lh+2wh2lh 2lhS2lh=2lw+2whS2lh2l+2h=w2l+2h2l+2hw=S2lh2l+2h
  1. y=axh2+k; x

    y=axh2+kyka=axh2ayka=xh2±yka=xhx=h±yka

Customer Service

Monday–Thursday 8:30am–6pm ET