Factoring Solutions

  • There are many ways to factor an expression. Consider this order for factoring polynomial expressions:

    1. Find the greatest common monomial factor    GCF    (other than 1).
    2. Factor by    grouping    (when given 4 terms).
    3. Analyze    sign    patterns.
    4. Factor    special    products.
    5. Factor    completely    using your preferred method.
  • Steps 1 and 2 both require determining and    factoring out    the GCF.
  • Step 3 refers to these patterns for factored trinomial expressions:
Example
x2+7x+10x+2x+5
x27x+10x2x5 x23x10x+2x5 x2+3x10x2x+5
Sign Pattern All terms positive
   two (+)   
, + pattern
   two ()   
End term ()
   (+) and ()   
End term ()
   (+) and ()   
  • Step 4 reminds you to look for:

A    difference    of two squares

Example:

x2y2xyx+y 

A    perfect square    trinomial

Example:

x2+2xy+y2x22xy+y2(x+y)(x+y)(xy)(xy)(x+y)2(xy)2 

  • Step 5 will be reviewed in Review Lesson 7.

Example 1

Factor by grouping.

5x220x6mx+24m

Implement

5x220x+6mx+24m5x220x+6mx+24m

5xx46mx4x45x6m

 

Example 2

Factor.

81x216 

Implement

(?+?)(??)(9x+4)(9x4) 

Explain

  • Analyze sign patterns
  • Difference of two squares

 

Example 3

Factor.

25x260x+36

Implement

(    )(    )(5x6)(5x6)(5x6)2

Explain

  • Analyze sign patterns
  • Perfect square trinomial

Customer Service

Monday–Thursday 8:30am–6pm ET