Practice Solutions

Use substitution to write the quadratic equation in vertex form.  

  1. a=6, h=14, k=8
     y=6(x14)28   
  1. a=4, h=9, k=2
     y=4(x+9)22  
  1. a=13, h=7, k=10
     y=13(x7)2+10   
  1. a=8, h=0, k=5 
     y=8(x0)2+5   y=8(x)2+5 

Identify a, h, and k. Name the vertex and the direction of the graph.

  1. y=2x32+7 
    a = 2, h = 3, k = 7
    The vertex is (3, 7) and the graph opens upward because a is positive.
  1. y=12x+22+5 

     a=12, h=2, k=5
    The vertex is (–2, 5) and the graph opens upward because a is positive.

Identify a, h, and k. Name the vertex and the direction of the graph.

  1. y=x628 
    a = 1, h = 6, k = –8
    The vertex is
    (6, –8) and the graph opens upward because a is positive.
  1. y=x42+10 
    = –1, = 4, = 10
    The vertex is (4, 10) and the graph opens downward (reflected) because a is negative.

Describe the transformation from the parent function. Explain your reasoning.

  1. y=x224 
    The graph is open upward because = 1, shifted right 2 spaces because = 2, and shifted down 4 spaces because = –4.
  1. y=x+12+2  
    The graph is open downward because = –1, shifted left 1 space because = –1, and shifted up 2 spaces because = 2.
  1. y=x32+12  
    The graph is open upward because = 1, shifted right 3 spaces because = 3, and shifted up 12 spaces because = 12.
  1. y=x+321  
    The graph is open downward because = –1, shifted left 3 spaces because = –3, and shifted down 1 space because = –1.

Customer Service

Monday–Thursday 8:30am–6pm ET