Solving Systems of Equations Algebraically Solutions

  • Algebraically, systems of equations can be solved using    substitution    or    elimination    (linear combination) or a combination of both.
  • Remember to solve for    both    variables and write them as an ordered pair.
  • When using    substitution   :
    • First,    replace    the variable with a number or an expression.
    • Then,    combine    like terms to solve for the remaining variable.
  • When using    elimination    (or linear combinations):
    • First, decide which    variable    to eliminate from the equation.
    • Then,    multiply    one or both equations by the least common multiple and add the equations vertically.
    • Last,    solve    for the remaining variable.
    • Remember, the    coefficients    of the eliminated variable must have opposite values when adding them together (i.e., 5x and –5x).

Example 1

Solve the system of equations using substitution.

a=12b14a+3b=15

412b1+3b=152b4+3b=155b5=195b=195a=121951a=19101010a=910

Solution: 910, 195

Check

4910+3195=15

3610+575=15185+575=15755=15

Example 2

Solve the system using linear combinations.  

6x+2y=33.505x+7y=45.25

Eliminate x, LCM5, 6=3056x+2y=33.5030x+10y=167.5065x+7y=45.2530x42y=271.5032y=104y=3.25

6x+23.25=33.506x+6.50=33.506x=27x=4.50

4.50, 3.25

Customer Service

Monday–Thursday 8:30am–6pm ET