Practice 2 Solutions

Given the graph, find the minimum and maximum values using the objective functions.

  1.  fx, y=x+23y

 f2, 3=2+233 f2, 3=4   minimum f4, 6=4+236 f4, 6=8 f2, 6=2+236 f2, 6=6 f7, 3=7+233 f7, 3=9   maximum 

This problem has one minimum at (2, 3), and one maximum at (7, 3).

  1.  fx, y=3yx

 f0, 5=350 f0, 5=15maximum f7, 7=377 f7, 7=14 f7, 3=337 f7, 3=2minimum

This problem has one minimum at (7, 3) and one maximum at (0, 5).

  1.  fx, y=8x5y

 f0, 4=8054 f0, 4=20 f4, 0=8450 f4, 0=32   maximum f0, 8=8058 f0, 8=40   minimum

This problem has one minimum at (0, 8) and one maximum at (4, 0).

  1.  fx, y=3x+2y

 f0, 2=30+22 f0, 2=4minimum f5, 3=35+23 f5, 3=21 f0, 4=30+24 f0, 4=8 f6, 2=36+22 f6, 2=22 maximum

This problem has one minimum at (0, 2) and one maximum at (6, 2).

Graph the system of inequalities. Name all of the vertices and evaluate using the objective function for the minimum and maximum values.

  1. yx+12y12xx2y2 fx, y=5xy

 f2, 2=522 f2, 2=8 f8, 4=584 f8, 4=36 maximum f2, 10=5210 f2, 10=0 minimum f4, 2=542 f4, 2=18

This problem has one minimum at (2, 10) and one maximum at (8, 4).

  1. 3x+5y45y2x+6x0y0 fx, y=3x+y

 f3, 0=33+0 f3, 0=9 f0, 9=30+9 f0, 9=9 f0, 6=30+6 f0, 6=6 minimum f15, 0=315+0 f15, 0=45 maximum 

This problem has one minimum at (0, 6) and one maximum at (15, 0).

  1. y3x+9y23x2x2 fx, y=2x+4y

 f3, 0=23+40 f3, 0=6 minimum  f2, 3=22+43 f2, 3=16

This problem has one minimum at (3, 0). This system is unbounded, so there is no maximum.

  1. x+5y25x+y9y1x0 fx, y=4x+y

 f0, 1=40+1 f0, 1=1 minimum f5, 4=45+4 f5, 4=24 f0, 5=40+5 f0, 5=5 f8, 1=48+1 f8, 1=33 maximum

This problem has one minimum at (0, 1) and one maximum at (8, 1).

  1. A food supplier has options for selling almonds and cashews in bulk as a way to save on restaurant food costs. Option A allows restaurants to buy 5-pound bags of almonds and 9-pound bags of cashews with a minimum order of at least $420. Option B allows restaurants to purchase 6-pound bags of almonds and 10-pound bags of cashews with a maximum order of $730. At least 30 pounds of almonds and at least 25 pounds of cashews must be ordered from the food supplier. Determine the minimum purchase when the cost of almonds is $6 per pound and the cost of cashews $8 per pound.

Let x = almonds, y = cashews

 f30, 30=630+830 f30, 30=420 minimum f80, 25=680+825 f80, 25=680 f30, 55=630+855 f30, 55=620 f39, 25=639+825 f39, 25=434

Note

Notice that all vertices are on the vertical or horizontal lines. You may substitute y = 25 into 5x+9y=420 and 6x+10y=730 to find the horizontal vertices. Substitute x = 30 into the equations to find the vertical vertices.

5x+9y4206x+10y730y25x30 f(x, y)=6x+8y

To minimize cost, the restaurant should order 30 pounds of almonds and 30 pounds of cashews.

  1. Sci Labs is producing two new robotic arms. Sci Labs will use at least 20 grams of aluminum and at least 15 grams of iron. Model A uses 30 grams of aluminum and 40 grams of iron and can weigh no more than 2700 grams. Model B uses 20 grams of aluminum and 30 grams of iron and can weigh no more than 1900 grams. Find the maximum number of grams of aluminum and iron Sci Labs should use with the optimization equation  fx, y=25x+38y.

Let x = grams of aluminum

Let y = grams of iron

 f20, 15=3520+3815 f20, 15=1270 f50, 30=3550+3830 f50, 30=2890 f20,50=3520+3850 f20, 50=2600 f70, 15=3570+3815 f70, 15=3020 maximum

x20y1530x+40y270020x+30y1900 fx, y=35x+38y

To have a maximum profit of $3,020 Sci Labs should produce 70 grams of aluminum and 15 grams of iron.

Customer Service

Monday–Thursday 8:30am–6pm ET