Practice 1 Solutions

Simplify. Write the polynomial expression with positive exponents.

Note

Problems 1–4
When dividing by a monomial, be sure that your student simplifies the numerical coefficients as well as the variables. The variables should be simplified using exponent rules.

  1. 20a3b215ab3+10a2b5ab

20a3b25ab15ab35ab+10a2b5ab

4a2b3b2+2a

  1. 13x4y5+39x226÷13x2y

13x4y5+39x22613x2y13x4y513x2y+39x213x2y2613x2y

x2y4+3y2x2y

  1. 2pq4+12p2q29p3q+8pq3p3q

2pq43p3q+12p2q23p3q9p3q3p3q+8pq3p3q

2q33p24qp+383p2

  1. 4x45x3+8x26x+24x1

4x44x5x34x+8x24x6x4x+24x

x35x24+2x32+12x

Simplify. Write the remainder as a fraction if one exists.

  1. 3y3+17y2+22y+8÷y+4

y+43y2+5y+23y3+17y2+22y+83y3+12y25y2+22y5y2+20y2y+82y+80

3y2+5y+2

Note

Q: How do you determine where to place the terms in the quotient?
A: By place-value according to the degree of the term.

Q: How can you determine if your solution is correct?
A: Find the product of the quotient and the divisor.

Q: What if your solution also contains a remainder?
A: You find the product first and then add in the remainder.

Q: When an expression is raised to the negative first power is this the dividend, divisor, quotient or remainder?
A: The divisor

  1. x23x+12x33x27x+3

x23x+12x+32x33x27x+32x36x2+2x3x29x+33x29x+30

2x+3

  1. x13x2+2x+1

x13x+53x2+2x+13x23x5x+15x56 +6x1

3x+5+6x1

  1. x43x2+x5x+11

x+1x3x22x+3x4+0x33x2+x5x4+x3x33x2x3x22x2+x2x22x3x53x+38 8x+1

x3x22x+38x+1

  1. 2y14y28y+3

2y12y34y28y+34y22y6y+36y+30

2y3

  1. 3x3+2x28x+2

x+23x24x+83x3+2x2+0x83x3+6x24x2+0x4x28x8x88x+1624 24x+2

3x24x+824x+2

  1. 3x4+2x2+16x+11x2+2x+1

x2+2x+13x26x+113x4+0x3+2x2+16x+113x4+6x3+3x26x3x2+16x6x312x26x11x2+22x+1111x2+22x+110

3x26x+11

  1. 2x3+13x2x110x521

x522x2+18x+442x3+13x2x1102x35x218x2x18x245x44x11044x1100

2x2+18x+44

  1. 5a330a2+705a

5a35a30a25a+705a

a26a+14a

  1. 5y4+3y3+8÷y+2

y+25y37y2+14y285y4+3y3+0y2+0y+85y4+10y37y3+0y27y314y214y2+0y14y2+28y28y+828y5664 +64y+2

5y37y2+14y28+64y+2

Note

Problems 15–16
Remember to use your Formula Sheet when working with figures.

  1. The volume of a rectangle prism is 2x34x16x+42 cm3. The area of the base is 2x210x+14 cm2. Find the height.

V=Bh2x34x216x+42=2x210x+14hh=2x34x216x+422x210x+14

2x210x+14x+32x34x216x+422x310x2+14x6x230x+426x230x+420

The height is x + 3 cm.

  1. The area of a triangle is x2+8x+7  m2. The height is + 1 meters. Determine the length of the base.

A=12bh2A=bh2x2+8x+7=bx+1b=2x216x+14x+1x+12x+142x2+16x+142x2+2x14x+1414x+140

The base is 2x + 14 meters.

Note

Q: How can you clear the fraction from the area of a triangle formula?
A: Multiply both sides of the formula by 
2.

Your student may also factor this problem to find the length of the base.

Customer Service

Monday–Thursday 8:30am–6pm ET